By Topic

A Novel Back Up Wide Area Protection Technique for Power Transmission Grids Using Phasor Measurement Unit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Current differential protection relays are widely applied to the protection of electrical plant due to their simplicity, sensitivity and stability for internal and external faults. The proposed idea has the feature of unit protection relays to protect large power transmission grids based on phasor measurement units. The principle of the protection scheme depends on comparing positive sequence voltage magnitudes at each bus during fault conditions inside a system protection center to detect the nearest bus to the fault. Then the absolute differences of positive sequence current angles are compared for all lines connecting to this bus to detect the faulted line. The new technique depends on synchronized phasor measuring technology with high speed communication system and time transfer GPS system. The simulation of the interconnecting system is applied on 500 kV Egyptian network using Matlab Simulink. The new technique can successfully distinguish between internal and external faults for interconnected lines. The new protection scheme works as unit protection system for long transmission lines. The time of fault detection is estimated by 5 msec for all fault conditions and the relay is evaluated as a back up relay based on the communication speed for data transferring.

Published in:

Power Delivery, IEEE Transactions on  (Volume:25 ,  Issue: 1 )