By Topic

Automatic Content Generation in the Galactic Arms Race Video Game

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Erin Jonathan Hastings ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Ratan K. Guha ; Kenneth O. Stanley

Simulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and in simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer. This paper introduces two novel technologies that take steps toward achieving this ambition: 1) a new algorithm called content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) is introduced that automatically generates graphical and game content while the game is played, based on the past preferences of the players, and 2) Galactic Arms Race (GAR), a multiplayer video game, is constructed to demonstrate automatic content generation in a real online gaming platform. In GAR, which is available to the public and playable online, players pilot space ships and fight enemies to acquire unique particle system weapons that are automatically evolved by the cgNEAT algorithm. A study of the behavior and results from over 1000 registered online players shows that cgNEAT indeed enables players to discover a wide variety of appealing content that is not only novel, but also based on and extended from previous content that they preferred in the past. Thus, GAR is the first demonstration of evolutionary content generation in an online multiplayer game. The implication is that with cgNEAT it is now possible to create applications that generate their own content to satisfy users, potentially reducing the cost of content creation and increasing entertainment value from single-player to massively multiplayer online games (MMOGs) with a constant stream of evolving content.

Published in:

IEEE Transactions on Computational Intelligence and AI in Games  (Volume:1 ,  Issue: 4 )