By Topic

Design of a Mode Decoupling STATCOM for Voltage Control of Wind-Driven Induction Generator Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woei-Luen Chen ; Electr. Eng. Dept., Chang Gung Univ., Taipei, Taiwan ; Wei-Gang Liang ; Hrong-Sheng Gau

This paper presents a systematic approach based on eigenstructure assignment to determine the mode shape and transient response of a STATCOM utilized as an exciter for induction generators (IG). A physical control scheme, including four control loops: ac voltage, dc voltage, ac active current and ac reactive current controllers, is pre-specified for the STATCOM. A synthetic algorithm is proposed to embed these physical control loops in the output feedback path. With appropriate oscillation mode design (eigenstructure) in each state variable, the STATCOM active current and reactive current will no longer be governed by the same mode but driven by new respective modes. The simulation and experimental results demonstrated that under various system disturbances, the proposed mode decoupling STATCOM is effective in regulating IG terminal voltage.

Published in:

Power Delivery, IEEE Transactions on  (Volume:25 ,  Issue: 3 )