By Topic

An Evolutionary Approach to the Multidepot Capacitated Arc Routing Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lining Xing ; College of Information Systems and Management, National University of Defense Technology, Changsha, China ; Philipp Rohlfshagen ; Yingwu Chen ; Xin Yao

The capacitated arc routing problem (CARP) is a challenging vehicle routing problem with numerous real world applications. In this paper, an extended version of CARP, the multidepot capacitated arc routing problem (MCARP), is presented to tackle practical requirements. Existing CARP heuristics are extended to cope with MCARP and are integrated into a novel evolutionary framework: the initial population is constructed either by random generation, the extended random path-scanning heuristic, or the extended random Ulusoy's heuristic. Subsequently, multiple distinct operators are employed to perform selection, crossover, and mutation. Finally, the partial replacement procedure is implemented to maintain population diversity. The proposed evolutionary approach (EA) is primarily characterized by the exploitation of attributes found in near-optimal MCARP solutions that are obtained throughout the execution of the algorithm. Two techniques are employed toward this end: the performance information of an operator is applied to select from a range of operators for selection, crossover, and mutation. Furthermore, the arc assignment priority information is employed to determine promising positions along the genome for operations of crossover and mutation. The EA is evaluated on 107 instances with up to 140 nodes and 380 arcs. The experimental results suggest that the integrated evolutionary framework significantly outperforms these individual extended heuristics.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:14 ,  Issue: 3 )