By Topic

Generalizing Surrogate-Assisted Evolutionary Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dudy Lim ; Center for Computational Intelligence, School of Computer Engineering, Nanyang Technological University, Singapore ; Yaochu Jin ; Yew-Soon Ong ; Bernhard Sendhoff

Using surrogate models in evolutionary search provides an efficient means of handling today's complex applications plagued with increasing high-computational needs. Recent surrogate-assisted evolutionary frameworks have relied on the use of a variety of different modeling approaches to approximate the complex problem landscape. From these recent studies, one main research issue is with the choice of modeling scheme used, which has been found to affect the performance of evolutionary search significantly. Given that theoretical knowledge available for making a decision on an approximation model a priori is very much limited, this paper describes a generalization of surrogate-assisted evolutionary frameworks for optimization of problems with objectives and constraints that are computationally expensive to evaluate. The generalized evolutionary framework unifies diverse surrogate models synergistically in the evolutionary search. In particular, it focuses on attaining reliable search performance in the surrogate-assisted evolutionary framework by working on two major issues: 1) to mitigate the 'curse of uncertainty' robustly, and 2) to benefit from the 'bless of uncertainty.' The backbone of the generalized framework is a surrogate-assisted memetic algorithm that conducts simultaneous local searches using ensemble and smoothing surrogate models, with the aims of generating reliable fitness prediction and search improvements simultaneously. Empirical study on commonly used optimization benchmark problems indicates that the generalized framework is capable of attaining reliable, high quality, and efficient performance under a limited computational budget.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:14 ,  Issue: 3 )