Cart (Loading....) | Create Account
Close category search window

Design of Last-Level On-Chip Cache Using Spin-Torque Transfer RAM (STT RAM)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Xu ; Electr. & Comput. Sci. Engi neering (ECSE) Dept., Rensselaer Polytech. Inst., Troy, NY, USA ; Hongbin Sun ; Xiaobin Wang ; Yiran Chen
more authors

Because of its high storage density with superior scalability, low integration cost and reasonably high access speed, spin-torque transfer random access memory (STT RAM) appears to have a promising potential to replace SRAM as last-level on-chip cache (e.g., L2 or L3 cache) for microprocessors. Due to unique operational characteristics of its storage device magnetic tunneling junction (MTJ), STT RAM is inherently subject to a write latency versus read latency tradeoff that is determined by the memory cell size. This paper first quantitatively studies how different memory cell sizing may impact the overall computing system performance, and shows that different computing workloads may have conflicting expectations on memory cell sizing. Leveraging MTJ device switching characteristics, we further propose an STT RAM architecture design method that can make STT RAM cache with relatively small memory cell size perform well over a wide spectrum of computing benchmarks. This has been well demonstrated using CACTI-based memory modeling and computing system performance simulations using SimpleScalar. Moreover, we show that this design method can also reduce STT RAM cache energy consumption by up to 30% over a variety of benchmarks.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.