By Topic

Energy-efficient power allocation in OFDM-based cognitive radio systems: A risk-return model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ziaul Hasan ; University of British Columbia ; Gaurav Bansal ; Ekram Hossain ; Vijay K. Bhargava

Efficient and reliable subcarrier power allocation in orthogonal frequency-division multiplexing (OFDM)-based cognitive radio networks is a challenging problem. Traditional waterfilling approach is inefficient for such networks due to the strict requirements on the interference generated to the primary users (PUs). In this paper, we present a solution to an energy-efficient resource allocation problem which maximizes the cognitive radio (i.e., secondary) link capacity taking into account the availability of the subcarriers (and hence the reliability of transmission by cognitive radios) and the limits on total interference generated to the PUs. We consider an energy-aware capacity expression by taking into account another factor called subcarrier availability. Optimizing such an expression saves valuable resources such as battery life by selectively allocating power to underutilized subcarriers. Based on a risk-return model, we formulate a convex optimization problem which incorporates a linear average rate loss function in the optimization objective to include the effect of subcarrier availability. Due to the complex structure of the optimal solution, we propose three suboptimal schemes, namely, the step-ladder, nulling, and scaling schemes. We compare the performances of optimal and suboptimal algorithms with the performance of a classical waterfilling scheme. We conclude that waterfilling, unable to satisfy the interference criterion, performs the worst amongst all the schemes considered in this paper.

Published in:

IEEE Transactions on Wireless Communications  (Volume:8 ,  Issue: 12 )