By Topic

LTRT: An efficient and reliable topology control algorithm for ad-hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miyao, K. ; Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan ; Nakayama, H. ; Ansari, N. ; Kato, N.

Broadcasting, in the context of ad-hoc networks, is a costly operation, and thus topology control has been proposed to achieve efficient broadcasting with low interference and low energy consumption. By topology control, each node optimizes its transmission power by maintaining network connectivity in a localized manner. Local Minimum Spanning Tree (LMST) is the state-of-the-art topology control algorithm, which has been proven to provide satisfactory performance. However, LMST almost always results in a 1-connected network, without redundancy to tolerate external factors. In this paper, we propose Local Tree-based Reliable Topology (LTRT), which is mathematically proven to guarantee k-edge connectivity while preserving the features of LMST. LTRT can be easily constructed with a low computational complexity of O(k(m + n log n)), where k is the connectivity of the resulting topology, n is the number of neighboring nodes, and m is the number of edges. Simulation results have demonstrated the efficiency of LTRT and its superiority over other localized algorithms.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 12 )