By Topic

Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Summers, J.A. ; Dept. of Phys., Mount Holyoke Coll., South Hadley, MA, USA ; Farzaneh, M. ; Ram, R.J. ; Hudgings, J.A.

We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale temperature imaging of SOAs and PICs, along with an energy balance model, are used to calculate the optical power distribution within and between SOAs to determine optical gain, fiber coupling loss, and passive component loss under normal device operating conditions. This technique is demonstrated to map optical power in SOA-based Mach-Zehnder interferometer (SOA-MZI) PICs, with close agreement with photocurrent and fiber-coupled measurements. The use of amplified spontaneous emission (ASE) for fiber-free characterization of the PICs is also shown, enabling non-invasive, wafer-scale testing prior to packaging.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 1 )