Cart (Loading....) | Create Account
Close category search window

Carbon Nanotubes as a Framework for High-Aspect-Ratio MEMS Fabrication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Hutchison, D.N. ; Dept. of Phys. & Astron., Brigham Young Univ., Provo, UT, USA ; Morrill, N.B. ; Aten, Q. ; Turner, Brendan W.
more authors

A class of carbon-nanotube (CNT) composite materials was developed to take advantage of the precise high-aspect-ratio shape of patterned vertically grown nanotube forests. These patterned forests were rendered mechanically robust by chemical vapor infiltration and released by etching an underlying sacrificial layer. We fabricated a diverse variety of functional MEMS devices, including cantilevers, bistable mechanisms, and thermomechanical actuators, using this technique. A wide range of chemical-vapor-depositable materials could be used as fillers; here, we specifically explored infiltration by silicon and silicon nitride. The CNT framework technique may enable high-aspect-ratio MEMS fabrication from a variety of materials with desired properties such as high-temperature stability or robustness. The elastic modulus of the silicon-nanotube and silicon nitride-nanotube composites is dominated by the filler material, but they remain electrically conductive, even when the filler (over 99% of the composite's mass) is insulating.

Published in:

Microelectromechanical Systems, Journal of  (Volume:19 ,  Issue: 1 )

Date of Publication:

Feb. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.