By Topic

Influence of Nonconsecutive Bar Breakages in Motor Current Signature Analysis for the Diagnosis of Rotor Faults in Induction Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Riera-Guasp, M. ; Dept. of Electr. Eng., Univ. Politec. de Valencia, Valencia, Spain ; Cabanas, M.F. ; Antonino-Daviu, J.A. ; Pineda-Sanchez, M.
more authors

Studies of rotor asymmetries in squirrel-cage induction motors have traditionally focused on analyses of the effects of the breakage of adjacent bars on the magnetic field and current spectrum. However, major motor manufacturers have reported cases where damaged bars are randomly distributed around the rotor perimeter of large HV machines. In some of these cases, the motors were being monitored under maintenance programs based on motor current signature analysis (MCSA), and the degree of degradation found in the rotor was much greater than that predicted by analysis of their current spectra. For this reason, a complete study was carried out, comprising a theoretical analysis, as well as simulation and tests, to investigate the influence that the number and location of faulty bars has on the traditional MCSA diagnosis procedure. From the theoretical analysis, based on the application of the fault-current approach and space-vector theory, a very simple method is deduced, which enables the left sideband amplitude to be calculated for any double bar breakage, per unit of the sideband amplitude corresponding to a single breakage. The proposed methodology is generalized for the estimation of the sideband amplitude in the case of multiple bar breakages and validated by simulation using a finite-element-based model, as well as by laboratory tests.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:25 ,  Issue: 1 )