By Topic

Designing Fuzzy-Rule-Based Systems Using Continuous Ant-Colony Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chia-Feng Juang ; Dept. of Electr. Eng., Nat. Chung-Hsing Univ., Taichung, Taiwan ; Po-Han Chang

This paper proposes the design of fuzzy-rule-based systems using continuous ant-colony optimization (RCACO). RCACO determines the number of fuzzy rules and optimizes all the free parameters in each fuzzy rule. It uses an online-rule-generation method to determine the number of rules and identify suitable initial parameters for the rules and then optimizes all the free parameters using continuous ant-colony optimization (ACO). In contrast to traditional ACO, which optimizes in the discrete domain, the RCACO optimizes parameters in the continuous domain and can achieve greater learning accuracy. In RCACO, the path of an ant is regarded as a combination of antecedent and consequent parameters from all the rules. A new path-selection method based on pheromone levels is proposed for initial-solution construction. The solution is modified by sampling from a Gaussian probability-density function and is then refined using the group best solution. Simulations on fuzzy control of three nonlinear plants are conducted to verify RCACO performance. Comparisons with other swarm intelligence and genetic algorithms demonstrate the advantages of RCACO.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 1 )