By Topic

Meta-model Assisted Optimization for Design Space Exploration of Multi-Processor Systems-on-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mariani, G. ; ALaRI, Univ. of Lugano, Lugano, Switzerland ; Palermo, G. ; Silvano, C. ; Zaccaria, V.

Multi-processor Systems-on-chip are currently designed by using platform-based synthesis techniques. In this approach, a wide range of platform parameters are tuned to find the best trade-offs in terms of the selected system figures of merit (such as energy, delay and area). This optimization phase is called Design Space Exploration (DSE) and it generally consists of a Multi-Objective Optimization (MOO) problem. The design space of a Multi-processor architecture is too large to be evaluated comprehensively. So far, several heuristic techniques have been proposed to address the MOO problem, but they are characterized by low efficiency to identify the Pareto front. In this paper, we address the MPSoC DSE problem by using an NSGA-II modified to be assisted by an Artificial Neural Network (ANN). In particular we exploit statistical methods to compute the prediction confidence intervals for the ANN approximations. These information are adopted in the evolution control strategy in order to carefully select which individuals should be simulated. Experimental results show that the proposed techniques is able to reduce the simulations needed for the optimization without decreasing the quality of the obtained Pareto Front. Results are compared with state of the art techniques to demonstrate that optimization time due to simulation can be speed up by adopting statistical methods during evolution control.

Published in:

Digital System Design, Architectures, Methods and Tools, 2009. DSD '09. 12th Euromicro Conference on

Date of Conference:

27-29 Aug. 2009