By Topic

Tensor-based face representation and recognition using multi-linear subspace analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hadis Mohseni ; Sharif University of Technology, Tehran, Iran ; Shohreh Kasaei

Discriminative subspace analysis is a popular approach for a variety of applications. There is a growing interest in subspace learning techniques for face recognition. Principal component analysis (PCA) and eigenfaces are two important subspace analysis methods have been widely applied in a variety of areas. However, the excessive dimension of data space often causes the curse of dimensionality dilemma, expensive computational cost, and sometimes the singularity problem. In this paper, a new supervised discriminative subspace analysis is presented by encoding face image as a high order general tensor. As face space can be considered as a nonlinear submanifold embedded in the tensor space, a decomposition method called Tucker tensor is used which can effectively decomposes this sparse space. The performance of the proposed method is compared with that of eigenface, Fisherface, tensor LPP, and ORO4×2 on ORL and Weizermann databases. Conducted experimental results show the superiority of the proposed method.

Published in:

Computer Conference, 2009. CSICC 2009. 14th International CSI

Date of Conference:

20-21 Oct. 2009