By Topic

A new evolutionary algorithm for structure learning in Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. R. Khanteymoori ; AmirKabir University, Computer Engineering Department, Tehran, Iran ; M. B. Menhaj ; M. M. Homayounpour

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this paper. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survive according to a performance index obtained from the underlying objective function of the optimization problem; this leads to the fitter individual. The proposed method is applied to real-world and benchmark applications, while its effectiveness is demonstrated through computer simulation. Results of simulation show that ARO outperforms GA because ARO results good structure in comparison with GA and the speed of convergence in ARO is more than GA. Finally, the ARO performance is statistically shown.

Published in:

Computer Conference, 2009. CSICC 2009. 14th International CSI

Date of Conference:

20-21 Oct. 2009