By Topic

Job failure prediction in grid environment based on workload characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fadishei, H. ; Parallel & Distrib. Process. Lab., Ferdowsi Univ. of Mashhad, Mashhad, Iran ; Saadatfar, H. ; Deldari, H.

The power of grid technology in aggregating autonomous resources owned by several organizations into a single virtual system has made it popular in compute-intensive and data-intensive applications. Complex and dynamic nature of grid makes failure of users' jobs fairly probable. Furthermore, traditional methods for job failure recovery have proven costly and thus a need to shift toward proactive and predictive management strategies is necessary in such systems. In this paper, an innovative effort is made to predict the futurity of jobs submitted to a production grid environment (AuverGrid). By analyzing grid workload traces and extracting patterns describing common failure characteristics, the success or failure status of jobs during 6 months of AuverGrid activity was predicted with around 96% accuracy. The quality of services on grid can be improved by integrating the result of this work into management services like scheduling and monitoring.

Published in:

Computer Conference, 2009. CSICC 2009. 14th International CSI

Date of Conference:

20-21 Oct. 2009