By Topic

A Rule Learning Multiobjective Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Carvalho, A.B. ; Dept. de Inf., Univ. Fed. do Parana, Curitiba, Brazil ; Pozo, A.

Multiobjective Metaheuristics (MOMH) permit to conceive a complete novel approach to induce classifiers. In the Rule Learning problem, the use of MOMH permit that the properties of the rules can be expressed in different objectives, and then the algorithm finds these rules in an unique run by exploring Pareto dominance concepts. This work describes a Multiobjective Particle Swarm Optimization (MOPSO) algorithm that handles with numerical and discrete attributes. The algorithm is evaluated by using the area under ROC curve and the approximation sets produced by the algorithm are also analyzed following Multiobjective methodology.

Published in:

Latin America Transactions, IEEE (Revista IEEE America Latina)  (Volume:7 ,  Issue: 4 )