By Topic

Low-constant parallel algorithms for finite element simulations using linear octrees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sundar, H. ; University of Pennsylvania, Philadelphia, PA ; Sampath, Rahul S. ; Adavani, Santi S. ; Davatzikos, Christos
more authors

In this article we propose parallel algorithms for the construction of conforming finite-element discretization on linear octrees. Existing octree-based discretizations scale to billions of elements, but the complexity constants can be high. In our approach we use several techniques to minimize overhead: a novel bottom-up tree-construction and 2:1 balance constraint enforcement; a Golomb-Rice encoding for compression by representing the octree and element connectivity as an Uniquely Decodable Code (UDC); overlapping communication and computation; and byte alignment for cache efficiency. The cost of applying the Laplacian is comparable to that of applying it using a direct indexing regular grid discretization with the same number of elements. Our algorithm has scaled up to four billion octants on 4096 processors on a Cray XT3 at the Pittsburgh Supercomputing Center. The overall tree construction time is under a minute in contrast to previous implementations that required several minutes; the evaluation of the discretization of a variable-coefficient Laplacian takes only a few seconds.

Published in:

Supercomputing, 2007. SC '07. Proceedings of the 2007 ACM/IEEE Conference on

Date of Conference:

10-16 Nov. 2007