By Topic

Advanced data flow support for scientific grid workflow applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Qin ; University of Innsbruck, Innsbruck, Austria ; Thomas Fahringer

Existing work does not provide a flexible dataset-oriented data flow mechanism to meet the complex requirements of scientific Grid workflow applications. In this paper we present a sophisticated approach to this problem by introducing a data collection concept and the corresponding collection distribution constructs, which are inspired by HPF, however applied to Grid workflow applications. Based on these constructs, more fine-grained data flows can be specified at an abstract workflow language level, such as mapping a portion of a dataset to an activity, independently distributing multiple datasets, not necessarily with the same number of data elements, onto loop iterations. Our approach reduces data duplication, optimizes data transfers as well as simplifies the effort to port workflow applications onto the Grid. We have extended AGWL with these concepts and implemented the corresponding runtime support in ASKALON. We apply our approach to some real world scientific workflow applications and report performance results.

Published in:

Supercomputing, 2007. SC '07. Proceedings of the 2007 ACM/IEEE Conference on

Date of Conference:

10-16 Nov. 2007