Cart (Loading....) | Create Account
Close category search window
 

A two-stage stochastic optimization model for air traffic conflict resolution under wind uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Vela, A.E. ; Univ. of Massachusetts, Amherst, MA, USA ; Salaun, E. ; Solak, S. ; Feron, E.
more authors

This paper considers the air traffic conflict resolution problem in the context of wind uncertainty. Aircraft are assigned changes in airspeed to prevent conflict. The goal is to determine the optimal maneuver to balance deviation costs (e.g., fuel costs) and the probability of conflict. A two-stage recourse model is developed, in which new airspeeds are assigned in the first stage, based on expected costs due to possible corrective actions in the second stage. The second-stage considers the expected costs for any last-minute maneuvers to compensate wind modeling errors. The resulting model is solved in real-time via numerical methods, providing optimal airspeed values for the resolution of a conflict.

Published in:

Digital Avionics Systems Conference, 2009. DASC '09. IEEE/AIAA 28th

Date of Conference:

23-29 Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.