By Topic

A hierarchical and concurrent approach for IEC 61499 function blocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gareth D. Shaw ; Department of Electrical and Computer Engineering, University of Auckland, New Zealand ; Partha S. Roop ; Zoran Salcic

The IEC 61499 function block standard proposes a new specification language for describing distributed industrial control systems. The standard specifies the use of an execution control chart (ECC) for state control, with algorithm calls for data handling. The design of complex industrial systems such as baggage handling systems can be difficult because of large state-spaces or complicated component interactions. Additionally, the flat state machines used in the standard do not provide a simple method for specifying error handling within the process's execution. State machines from synchronous languages, however, have hierarchy and concurrent constructs to aid the developer. This paper presents a hierarchical and concurrent extension to ECCs, which we call HCECCs, which presents new design constructs adapted from synchronous languages in order to improve system specification with function blocks. The semantics of HCECCs, which are backward compatible with the standard, are described and design using HCECCs is compared with other specification approaches.

Published in:

2009 IEEE Conference on Emerging Technologies & Factory Automation

Date of Conference:

22-25 Sept. 2009