By Topic

Nonlinear dynamic system control using wavelet neural network based on sampling theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ehsan Hossaini-asl ; Department of Automation and Instrumentation, Petroleum University of technology, Tehran, Iran ; Mehdi Shahbazian

Wavelet neural network based on sampling theory has been found to have a good performance in function approximation. In this paper, this type of wavelet neural network is applied to modeling and control of a nonlinear dynamic system and some methods are employed to optimize the structure of wavelet neural network to prevent a large number of nodes. The direct inverse control technique is employed for investigating the ability of this network in control application. A variety of simulations are conducted for demonstrating the performance of the direct inverse control using wavelet neural network. The performance of this approach is compared with direct inverse control using multilayer perceptron neural network (MLP). Simulation results show that our proposed method reveals better stability and performance in reference tracking and control action.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009