By Topic

Robust feature extractions from geometric data using geometric algebra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Minh Tuan Pham ; Sch. of Eng., Nagoya Univ., Nagoya, Japan ; Yoshikawa, T. ; Furuhashi, T. ; Tachibana, K.

Most conventional methods of feature extraction for pattern recognition do not pay sufficient attention to inherent geometric properties of data, even in the case where the data have spatial features. This paper introduces geometric algebra to extract invariant geometric features from spatial data given in a vector space. Geometric algebra is a multidimensional generalization of complex numbers and of quaternions, and it ables to accurately describe oriented spatial objects and relations between them. This paper proposes to combine several geometric features using Gaussian mixture models. It applies the proposed method to the classification of hand-written digits.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009