By Topic

An artificial immune systems based predictive modelling approach for the multi-objective elicitation of mamdani fuzzy rules: A special application to modelling Alloys

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Chen ; Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK ; Mahfouf, M.

In this paper, a systematic multi-objective Mamdani fuzzy modeling approach is proposed, which can be viewed as an extended version of the previously proposed Singleton fuzzy modeling paradigm. A set of new back-error propagation (BEP) updating formulas are derived so that they can replace the old set developed in the singleton version. With the substitution, the extension to the multi-objective Mamdani fuzzy rule-based systems (FRBS) is almost endemic. Due to the carefully chosen output membership functions, the inference and the defuzzification methods, a closed form integral can be deducted for the defuzzification method, which ensures the efficiency of the developed Mamdani FRBS. Some important factors, such as the variable length coding scheme and the rule alignment, are also discussed. Experimental results for a real data set from the steel industry suggest that the proposed approach is capable of eliciting not only accurate but also transparent FRBS with good generalization ability.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009