By Topic

Design and simulation of a low voltage wide band RF MEMS switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mafinejad, Y. ; Sch. of Eng., Deakin Univ., Geelong, VIC, Australia ; Kouzani, A.Z. ; Mafinezhad, K. ; Nabovatti, H.

This paper presents design of an electrostatic wide band shunt capacitive coupling RF MEMS switch with low actuation voltage. The key factors of the RF MEMS switch design are the proper scattering parameters, low actuation voltage, and the cost of the fabrication process. An overview of the recent low actuation voltage RFMEMS switches has been presented. These designs still suffer from the complexity of process, lack of reliability, limitation of frequency band, and process cost. RF characteristics of a shunt RF MEMS switches are specified mostly by coupling capacitor in upstate position of the membrane Cu. This capacitor is in trade-off with actuation voltage. In this work, the capacitor is eliminated by using two short high impedance transmission lines, at the input and output of the switch. The simulation results demonstrate an improvement in the RF characteristic of the switch.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009