By Topic

Regrouping particle swarm optimization: A new global optimization algorithm with improved performance consistency across benchmarks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
George I. Evers ; The Electrical Engineering Department, The University of Texas-Pan American, Edinburg, Texas USA ; Mounir Ben Ghalia

Particle swarm optimization (PSO) is known to suffer from stagnation once particles have prematurely converged to any particular region of the search space. The proposed regrouping PSO (RegPSO) avoids the stagnation problem by automatically triggering swarm regrouping when premature convergence is detected. This mechanism liberates particles from sub-optimal solutions and enables continued progress toward the true global minimum. Particles are regrouped within a range on each dimension proportional to the degree of uncertainty implied by the maximum deviation of any particle from the globally best position. This is a computationally simple yet effective addition to the computationally simple PSO algorithm. Experimental results show that the proposed RegPSO successfully reduces each popular benchmark tested to its approximate global minimum.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009