By Topic

An efficient image pattern recognition system using an evolutionary search strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A mechanism involving evolutionary genetic programming (GP) and the expectation maximization algorithm (EM) is proposed to generate feature functions automatically, based on the primitive features, for an image pattern recognition system on the diagnosis of the disease OPMD. Prior to the feature function generation, we introduce a novel technique of the primitive texture feature extraction, which deals with non-uniform images, from the histogram region of interest by thresholds (HROIT). Compared with the performance achieved by support vector machine (SVM) using the whole primitive texture features, the GP-EM methodology, as a whole, achieves a better performance of 90.20% recognition rate on diagnosis, while projecting the hyperspace of the primitive features onto the space of a single generated feature.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009