Cart (Loading....) | Create Account
Close category search window
 

CRF-based active learning for Chinese named entity recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lin Yao ; Comput. Sci. Dept., HITSGS, Shenzhen, China ; Chengjie Sun ; Shaofeng Li ; Xiaolong Wang
more authors

Conditional random fields (CRFs) have been used for many sequence labeling tasks and got excellent results. Further, the supervised model strongly depends on the huge training data. Active learning is a different way rather than relying on a large amount random sampling. However, random sampling constructively participates in the optimal choosing training examples. Based on different query strategies, active learning can combine with other machine learning methods to reduce the annotation cost while maintaining the accuracy. This paper proposes a new active learning strategy based on information density (ID) integrated with CRFs for Chinese named entity recognition (NER). On Sighan bakeoff 2006 MSRA NER corpus, an F1 score of 77.2% is achieved by using only 10,000 labeled training sentences chosen by the proposed active learning strategy.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.