By Topic

Levenberg-marquardt-based OBS algorithm using adaptive pruning interval for system identification with dynamic neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Christian Endisch ; Institute for Electrical Drive Systems and Power Electronics, Technische Universität München, 80333 München, Germany ; Peter Stolze ; Peter Endisch ; Christoph Hackl
more authors

This paper presents a pruning algorithm using adaptive pruning interval for system identification with general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The parameters are trained with the Levenberg-Marquardt (LM) optimization algorithm. Therefore the Jacobian matrix is required. The Jacobian is calculated by real time recurrent learning (RTRL). As both LM and OBS need Hessian information, computing time can be saved, if OBS uses the scaled inverse Hessian already calculated for the LM algorithm. This paper discusses the effect of using the scaled Hessian instead of the real Hessian in the OBS pruning approach. In addition to that an adaptive pruning interval is introduced. Due to pruning the structure of the identification model is changed drastically. So the parameter optimization task between the pruning steps becomes more or less complex. To guarantee that the parameter optimization algorithm has enough time to cope with the structural changes in the GDNN-model, it is suggested to adapt the pruning interval during the identification process. The proposed algorithm is verified simulatively for two standard identification examples.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009