By Topic

Impedance matching of humans ⇔ machines in high-Q information retrieval systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Robert S. Bauer ; H5 San Francisco, USA, John Seely Brown, Deloitte Center for the Edge - San Jose, USA & University of Southern California - Los Angeles, USA ; Dan Brassil ; Christopher Hogan ; Gina Taranto

Treating the information retrieval (IR) task as one of classification has been shown to be the most effective way to achieve high performance. In real-world Systems, a human is the ultimate determinant of relevance and must be integrated symbiotically into the control structures. We report on a hybrid, Human-Assisted Computer Classification system that opportunistically pairs processes of Active Learning and User Modeling to produce a high-Q computational engine. Top-down human goals are impedance-matched with bottom-up corpus analysis utilizing critical control loops. The System contributions of humans and machines as 'Proxy,' 'Assessor,' and 'Classifier' elements are blended through inter-related 'Model,' 'Match,' and 'Measure' processes (M3) to achieve consistently high precision IR with high recall. We report results for over a dozen topics, with confirmation of internal measures from topic 103 of the 2008 TREC legal track's interactive task.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009