By Topic

A novel technique to design a fuzzy logic controller using Q(λ)-learning and genetic algorithms in the pursuit-evasion game

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Desouky, S.F. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada ; Schwartz, H.M.

This paper presents a novel technique to tune the parameters of a fuzzy logic controller using a combination of reinforcement learning and genetic algorithms. The proposed technique is called a Q(λ)-learning based genetic fuzzy logic controller (QLBGFLC). The proposed technique is applied to a pursuit-evasion game in which the pursuer does not know its control strategy. We assume that we do not even have a simplistic PD controller strategy. The learning goal for the pursuer is to self-learn its control strategy. The pursuer should do that on-line by interaction with the environment; in this case the evader. Our proposed technique is compared with the optimal strategy, Q(λ)-learning only, and unsupervised genetic algorithm learning. Computer simulations show the usefulness of the proposed technique.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009