By Topic

Application of a Multiseed-Based Clustering Technique for Automatic Satellite Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saha, S. ; Machine Intell. Unit, Indian Stat. Inst., Kolkata, India ; Bandyopadhyay, S.

The problem of classifying an image into different homogeneous regions is viewed as a task of clustering the pixels in the intensity space. In this letter, a newly developed genetic clustering technique is used for automatically segmenting remote sensing satellite images. Each cluster is divided into several small hyperspherical subclusters, and the centers of all these small subclusters are encoded in a chromosome to represent the whole clustering. For assigning points to different clusters, these local subclusters are considered individually. For the purpose of objective function evaluation, these subclusters are merged appropriately to form a variable number of global clusters. A newly proposed point-symmetry-distance-based cluster validity index, Sym index, is used as a measure of the validity of the corresponding segment. The effectiveness of the proposed technique compared to a fuzzy C-means clustering technique, a recently proposed GAPS clustering with Sym-index-based method, and a subtractive clustering technique is demonstrated in identifying different land cover regions from two numeric image data sets and a remote sensing image of a part of the city of Kolkata.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:7 ,  Issue: 2 )