By Topic

A Gradient-Descent-Based Approach for Transparent Linguistic Interface Generation in Fuzzy Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Long Chen ; Dept. of Electr. & Comput. Eng., Univ. of Texas at San Antonio, San Antonio, TX, USA ; Chen, C.L.P. ; Pedrycz, W.

Linguistic interface is a group of linguistic terms or fuzzy descriptions that describe variables in a system utilizing corresponding membership functions. Its transparency completely or partly decides the interpretability of fuzzy models. This paper proposes a GRadiEnt-descEnt-based Transparent lInguistic iNterface Generation (GREETING) approach to overcome the disadvantage of traditional linguistic interface generation methods where the consideration of the interpretability aspects of linguistic interface is limited. In GREETING, the widely used interpretability criteria of linguistic interface are considered and optimized. The numeric experiments on the data sets from University of California, Irvine (UCI) machine learning databases demonstrate the feasibility and superiority of the proposed GREETING method. The GREETING method is also applied to fuzzy decision tree generation. It is shown that GREETING generates better transparent fuzzy decision trees in terms of better classification rates and comparable tree sizes.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:40 ,  Issue: 5 )