By Topic

Closed-Form Evaluation of the Second-Order Statistical Distribution of the Interferometric Phases in Dual-Baseline SAR Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lucido, M. ; DAEIMI, Univ. di Cassino, Cassino, Italy ; Meglio, F. ; Pascazio, V. ; Schirinzi, G.

Multichannel inteferometric synthetic aperture radar (InSAR) systems allow to improve the accuracy of the estimation of the height profiles of the observed scenes. Multichannel images can be acquired by using different sensors operating at different frequencies (multifrequency InSAR) or acquiring multiple images with slightly different view angles (multibaseline InSAR). The enhanced accuracy height estimation is obtained exploiting the multichannel interferometric phases and an a priori inaccurate ground profile and requires the knowledge of the joint probability distribution of the multichannel interferometric phases, whose evaluation in a closed form is very complicated and is not found in literature. In this paper, we evaluate the analytical form of the second-order probability density function (pdf) of dual-baseline InSAR phase interferograms, obtained from three mutually correlated interferometric images. The evaluation exploits the Gaussian model for the complex SAR images, takes into account the mutual correlation of all the images, and does not use any approximation. The closed form of the second-order joint pdf can be usefully adopted in statistical digital elevation model (DEM) estimation methods using dual-baseline SAR systems, which commonly use an approximate expression of the joint pdf of measured interferometric phases, given by the product of the marginal pdfs of each phase interferogram, obtained in the assumption of independent interferograms. The effect of this approximation is evaluated by computing the Cramer-Rao lower bounds and the mean square estimation errors obtained using the exact and the approximate model. Presented results represent the basis for the generalization to the case of more than two interferograms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 3 )