By Topic

An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stephen D. Gedney ; Dept. of Electrical and Computer Engineering, University of Kentucky, Lexington ; Bo Zhao

An efficient auxiliary-differential equation (ADE) form of the complex frequency shifted perfectly matched layer (CPML) absorbing media derived from a stretched coordinate PML formulation is presented. It is shown that a unit step response of the ADE-CPML equations leads to a discrete form that is identical to Roden's convolutional PML method for FDTD implementations. The derivation of discrete difference operators for the ADE-CPML equations for FDTD is also presented. The ADE-CPML method is also extended in a compact form to a multiple-pole PML formulation. The advantage of the ADE-CPML method is that it provides a more flexible representation that can be extended to higher-order methods. In this paper, it is applied to the discontinuous Galerkin finite element time-domain (DGFETD) method. It is demonstrated that the ADE-CPML maintains the exponential convergence of the DGFETD method.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 3 )