By Topic

A Numerical Methodology for Efficient Evaluation of 2D Sommerfeld Integrals in the Dielectric Half-Space Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amit Hochman ; Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel ; Yehuda Leviatan

The analysis of 2D scattering in the presence of a dielectric half-space by integral-equation formulations involves repeated evaluation of Sommerfeld integrals. Deformation of the contour to the steepest-descent path results in a well-behaved integrand, that can be readily integrated. A well-known drawback of this method is that an analytical expression for the path is available only for evaluation of the reflected fields, but not for the evaluation of the transmitted fields. A simple scheme for numerical determination of the steepest-descent path, valid for both cases, is presented. The computational cost of the numerical determination is comparable to that of evaluating the analytical expression for the steepest-descent path for reflected fields. When necessary, contributions from branch-cut integrals and a second saddle point are taken into account. Certain ranges of the input parameters, which result in integrands that vary rapidly in the neighborhood of the saddle point, require special treatment. Alternative paths and specialized Gaussian quadrature rules for these cases are also proposed. An implementation of the proposed numerically determined steepest-descent path (ND-SDP) method is freely available for download.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 2 )