By Topic

Far Field Subwavelength Source Resolution Using Phase Conjugating Lens Assisted With Evanescent-to-Propagating Spectrum Conversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oleksandr Malyuskin ; The Institute of Electronics Communications and Information Technology, Queens University Belfast, Belfast, U.K. ; Vincent Fusco

The imaging properties of a phase conjugating lens operating in the far field zone of the imaged source and augmented with scatterers positioned in the source near field region are theoretically studied in this paper. The phase conjugating lens consists of a double sided 2D assembly of straight wire elements, individually interconnected through phase conjugation operators. The scattering elements are straight wire segments which are loaded with lumped impedance loads at their centers. We analytically and numerically analyze all stages of the imaging process; i) evanescent-to-propagating spectrum conversion; ii) focusing properties of infinite or finite sized phase conjugating lens; iii) source reconstruction upon propagating-to-evanescent spectrum conversion. We show that the resolution that can be achieved depends critically on the separation distance between the imaged source and scattering arrangement, as well as on the topology of the scatterers used. Imaged focal widths of up to one-seventh wavelength are demonstrated. The results obtained indicate the possibility of such an arrangement as a potential practical means for realising using conventional materials devices for fine feature extraction by electromagnetic lensing at distances remotely located from the source objects under investigation.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 2 )