By Topic

Investigation Into the Effects of the Patch-Type FSS Superstrate on the High-Gain Cavity Resonance Antenna Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alireza Foroozesh ; Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada ; Lotfollah Shafai

Results of modeling, design, simulation and fabrication are presented for a high-gain cavity resonance antenna (CRA), employing highly-reflective patch-type superstrates. In order to determine the resonant conditions, the antenna is first analyzed using the transverse equivalent network (TEN) model, as well as the well known simple ray-tracing method. Prior to that, a highly-reflective patch-type frequency selective surface (FSS) is designed in order to be employed as the superstrate layer of the CRA. Next, a 2.5-D full-wave analysis software package, based on the method of moments (ANSOFT Designer v4.0), is utilized to analyze the antenna structure. Using this full-wave analyzer, the input impedance properties of an actual antenna are investigated as well. Then, a 3-D full-wave analyzer, based on the finite element method (ANSOFT HFSS), is used to extract the directivity and radiation patterns of the CRA, taking into account the finiteness of the substrate, superstrate and ground plane. Some previously unaddressed issues, such as the effects of the FSS superstrate on the input impedance characteristics of the probe-fed microstrip patch antenna, acting as the excitation source of the CRA are also studied. The effects of the highly-reflective FSS superstrate size on the CRA directivity, and explicitly its aperture efficiency, are investigated as well. A comparative study is also performed between CRAs with patch-type FSS and high permittivity dielectric superstrates. Measurement results are provided to support the modelings and simulations.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 2 )