By Topic

Coevolution of Role-Based Cooperation in Multiagent Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chern Han Yong ; Computational Biology Laboratory, School of Computing, National University of Singapore, Singapore ; Risto Miikkulainen

In tasks such as pursuit and evasion, multiple agents need to coordinate their behavior to achieve a common goal. An interesting question is, how can such behavior be best evolved? A powerful approach is to control the agents with neural networks, coevolve them in separate subpopulations, and test them together in the common task. In this paper, such a method, called multiagent enforced subpopulations (multiagent ESP), is proposed and demonstrated in a prey-capture task. First, the approach is shown to be more efficient than evolving a single central controller for all agents. Second, cooperation is found to be most efficient through stigmergy, i.e., through role-based responses to the environment, rather than communication between the agents. Together these results suggest that role-based cooperation is an effective strategy in certain multiagent tasks.

Published in:

IEEE Transactions on Autonomous Mental Development  (Volume:1 ,  Issue: 3 )