By Topic

Isolated Wind–Hydro Hybrid System Using Cage Generators and Battery Storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Goel, P.K. ; Minist. of Power, Gov. of India, New Delhi, India ; Singh, B. ; Murthy, S.S. ; Kishore, N.

This paper deals with a new isolated wind-hydro hybrid generation system employing one squirrel-cage induction generator (SCIG) driven by a variable-speed wind turbine and another SCIG driven by a constant-power hydro turbine feeding three-phase four-wire local loads. The proposed system utilizes two back-to-back-connected pulsewidth modulationcontrolled insulated-gate-bipolar-transistor-based voltage-source converters (VSCs) with a battery energy storage system at their dc link. The main objectives of the control algorithm for the VSCs are to achieve maximum power tracking (MPT) through rotor speed control of a wind-turbine-driven SCIG under varying wind speeds and control of the magnitude and the frequency of the load voltage. The proposed wind-hydro hybrid system has a capability of bidirectional active- and reactive-power flow, by which it controls the magnitude and the frequency of the load voltage. The proposed electromechanical system using SCIGs, an MPT controller, and a voltage and frequency controller are modeled and simulated in MATLAB using Simulink and Sim Power System set toolboxes, and different aspects of the proposed system are studied for various types of linear, nonlinear, and dynamic loads, and under varying wind-speed conditions. The performance of the proposed system is presented to demonstrate its capability of MPT, voltage and frequency control (VFC), harmonic elimination, and load balancing.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 4 )