By Topic

Novel Weighting-Delay-Based Stability Criteria for Recurrent Neural Networks With Time-Varying Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huaguang Zhang ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China ; Zhenwei Liu ; Guang-Bin Huang ; Zhanshan Wang

In this paper, a weighting-delay-based method is developed for the study of the stability problem of a class of recurrent neural networks (RNNs) with time-varying delay. Different from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing weighting delays. Thus, new delay-dependent stability criteria for RNNs with time-varying delay are derived by applying this weighting-delay method, which are less conservative than previous results. The proposed stability criteria depend on the positions of weighting delays in the interval [0, d(t)], which can be denoted by the weighting-delay parameters. Different weighting-delay parameters lead to different stability margins for a given system. Thus, a solution based on optimization methods is further given to calculate the optimal weighting-delay parameters. Several examples are provided to verify the effectiveness of the proposed criteria.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 1 )