Cart (Loading....) | Create Account
Close category search window
 

Simulation-based performance analysis and improvement of orthogonal frequency division multiplexing - 802.11p system for vehicular communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiokes, G. ; Microwaves & Opt. Lab., Nat. Tech. Univ. of Athens, Athens, Greece ; Amditis, A. ; Uzunoglu, N.K.

In this study, the physical layer (PHY) of the upcoming vehicular communication standard IEEE 802.11p has been simulated in vehicle-to-vehicle situation through two different scenarios. IEEE 802.11p wireless access in vehicular environment defines modifications to IEEE 802.11 to support intelligent transportation systems applications. The standard is being considered as a promising wireless technology for enhancing transportation safety and provides safety-related services like collision avoidance and emergency breaking. At first, this includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure in the licensed ITS band of 5.9 GHz. Performance analysis of PHY model has been evaluated into different propagation conditions (AWGN, Ricean and Rayleigh fading). In particular, bit error rate (BER) and signal to noise ratio for all the data rates have been estimated. Simulation results reveal that our system can efficiently mitigate inter-symbol interference and inter-carrier interference introduced by multi-path delay spread in our high mobility environment but against frequency-selective fading BER values are on to increase. To overcome this problem, the authors propose to use a different value of guard interval (3.2 s). Our initial results indicate that the performance with the larger cyclic prefix outperforms the performance of the initial value in our mobile channel profiles. Moreover, the authors investigated in which way the Doppler spread affects the performance with regard to the transmission distance.

Published in:

Intelligent Transport Systems, IET  (Volume:3 ,  Issue: 4 )

Date of Publication:

December 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.