By Topic

Self-tuning flexible ac transmission system controllers for power oscillation damping: a case study in real time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Domahidi, A. ; Autom. Control Lab., ETH Zurich, Zurich, Switzerland ; Chaudhuri, B. ; Korba, P. ; Majumder, R.
more authors

Design and real-time implementation of a self-tuning flexible ac transmission system (FACTS) controller is illustrated for power oscillation damping. Although the system model is not required for self-tuning control design, it is shown to perform similar to a model-based design. For parameter estimation, the classical recursive least square (RLS) is supplemented by a random walk (RW) with a switched structure and compared to standard variable forgetting factor (VFF) approach. It is shown that the RW improves the accuracy and convergence of the estimated system parameters, which is critical to self-tuning control following large disturbances. The performance is validated in real time using a commercial real-time simulation platform. The control computation time is shown to be considerably less than the typical sampling time used for power oscillation damping applications demonstrating the feasibility of self-tuning FACTS controllers in practice.

Published in:

Generation, Transmission & Distribution, IET  (Volume:3 ,  Issue: 12 )