Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Dynamic Estimation of Curve Evolution in Image Segmentation with CRFs Label Inferring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tong Luo ; Med. Electron & Inf. Dept., Univ. of Shanghai for Sci. & Technol., Shanghai, China ; Yuquan Chen ; Jianfeng Li ; Jianhua Li

Typical low level segmentation method like level set method can be explained in maximum a posteriori estimation (MAP) for pixel label. In this paper, CRFs model is introduced in label estimation combined with level set to produce fast low level process and accurate high level inference. The energy term in level set evolution is also extended to contain object spatial factors, gradient is provided as the spatial updating basis, besides the temporal characteristic in curve evolution. Unlike simple CRFs model, a feedback machinery is imported in parameters learning, the reasons lie in the fact that CRFs could has small sample size and its modeling approach is mainly rely on model structure, but image patch is a typical local feature which is not directly applied into. With image patch used in the feedback, the accuracy of learning can be improved. At last, energy function is extended to allow complicated multiple regions competition, the local features is merged in the process.

Published in:

Pattern Recognition, 2009. CCPR 2009. Chinese Conference on

Date of Conference:

4-6 Nov. 2009