Cart (Loading....) | Create Account
Close category search window

Performance of receivers with linear detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Helstrom, C.W. ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, CA, USA

The false-alarm and detection probabilities of a receiver summing M independent outputs of a linear detector are calculated by numerical saddlepoint integration. The saddlepoint approximation is also considered. Both constant-amplitude and Rayleigh-fading signals are treated, and the relative efficiency of the quadratic and the linear detectors for these is calculated for a broad range of values of M . The numerical integration method is the more efficient, the smaller the false-alarm probability or the false-dismissal probability, that is, under just those conditions for which the terms in the Gram-Charlier series oscillate most violently and the series becomes least reliable. The simpler saddlepoint approximation yields values that in those same regions have been found close enough to the exact probabilities to be adequate for most engineering purposes. The larger the number M of samples, the more efficient methods are

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:26 ,  Issue: 2 )

Date of Publication:

Mar 1990

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.