By Topic

Microfluidics for reconfigurable electromagnetic metamaterials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3268448 

We propose microfluidics as a useful platform for reconfigurable electromagnetic metamaterials. Microfluidic split-ring resonators (MF-SRRs) are fabricated inside a flexible elastomeric material by employing rapid prototyping. The transmission measurements performed for mercury-injected MF-SRR exhibits sharp magnetic resonances at microwave wavelengths. We further calculate transmission properties of the MF-SRR array and the effect of electrical conductivity of the liquid inside the channel on the magnetic resonance. The measured results agree well with numerical calculations. Our proposal may open up directions toward switchable metamaterials and reconfigurable devices such as filters, switches, and resonators.

Published in:

Applied Physics Letters  (Volume:95 ,  Issue: 21 )