By Topic

Error rate and diversity order of multinode cooperative communications in dissimilar nakagami fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xu, F. ; Coll. of Inf. Sci. & Technol., Dalian Maritime Univ., Dalian, China ; Lau, F.C.M. ; Yue, D.-W. ; Hau, S.F.

Cooperative communications has been recognised as an effective technique to combat multi-path fading impairment and to provide additional diversity advantage for small-size and low-power-consumption mobile terminals. A class of decode-and-forward (DF) relaying serial cooperative communications, in which each node is assumed to be able to determine whether the received signals can be successfully decoded or not, has recently been proposed and analysed over Rayleigh fading channels. Since the Nakagami fading channels represent a wide variety of realistic channels, such serial cooperative networks should be investigated over such channels before putting into real applications. In this paper, we analyse the performance of such serial cooperative transmission systems thoroughly over dissimilar Nakagami fading channels. We derive a closed-form symbol-error-rate expression for the case of M-ary phase shift keying (PSK) modulation. Moreover, we evaluate the system diversity property and investigate the achievable diversity order under two specific channel conditions. Finally, we perform simulations to verify the theoretical findings.

Published in:

Communications, IET  (Volume:3 ,  Issue: 12 )