By Topic

Tree-Structured Compressive Sensing With Variational Bayesian Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lihan He ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Haojun Chen ; Carin, L.

In compressive sensing (CS) the known structure in the transform coefficients may be leveraged to improve reconstruction accuracy. We here develop a hierarchical statistical model applicable to both wavelet and JPEG-based DCT bases, in which the tree structure in the sparseness pattern is exploited explicitly. The analysis is performed efficiently via variational Bayesian (VB) analysis, and comparisons are made with MCMC-based inference, and with many of the CS algorithms in the literature. Performance is assessed for both noise-free and noisy CS measurements, based on both JPEG-DCT and wavelet representations.

Published in:

Signal Processing Letters, IEEE  (Volume:17 ,  Issue: 3 )