By Topic

Autonomous Robotic Pick-and-Place of Microobjects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong Zhang ; Advanced Micro and Nanosystems Laboratory, University of Toronto , Toronto, Canada ; Brandon K. Chen ; Xinyu Liu ; Yu Sun

This paper presents a robotic system that is capable of both picking up and releasing microobjects with high accuracy, reliability, and speed. Due to force-scaling laws, large adhesion forces at the microscale make rapid, accurate release of microobjects a long-standing challenge in micromanipulation, thus representing a hurdle toward automated robotic pick-and-place of micrometer-sized objects. The system employs a novel microelectromechanical systems (MEMS) microgripper with a controllable plunging structure to impact a microobject that gains sufficient momentum to overcome adhesion forces. The performance was experimentally quantified through the manipulation of 7.5-10.9 ??m borosilicate glass spheres in an ambient environment. Experimental results demonstrate that the system, for the first time, achieves a 100% success rate in release (which is based on 700 trials) and a release accuracy of 0.45 ?? 0.24 ??m. High-speed, automated microrobotic pick-and-place was realized by visually recognizing the microgripper and microspheres, by visually detecting the contact of the microgripper with the substrate, and by vision-based control. Example patterns were constructed through automated microrobotic pick-and-place of microspheres, achieving a speed of 6 s/sphere, which is an order of magnitude faster than the highest speed that has been reported in the literature.

Published in:

IEEE Transactions on Robotics  (Volume:26 ,  Issue: 1 )