By Topic

Distribution and Diffusion of Water in Model Epoxy Molding Compound: Molecular Dynamics Simulation Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seung Geol Lee ; Textile & Fiber Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Seung Soon Jang ; Jongman Kim ; Gene Kim

The distribution and diffusion of water with various water content in a fully crosslinked epoxy molding compound was simulated using a parallel full-atomistic molecular dynamics simulation method. We found that the free volume is 5.1%, 4.4%, and 4.0% of the total system volume at 0 wt%, 4 wt%, and 7 wt% of water content, respectively, accommodating the absorbed water molecules, where the molecules are distributed throughout the system. The hydrophilic groups of the epoxy molding compound (such as tertiary amine groups and hydroxyl groups) are uniformly distributed through the system: the average distance between the amine groups is ~9.5 ?? and that between the hydroxyl groups is 3.8-7.2 ??. The water molecules are distributed in proximity to these hydrophilic groups. By counting the number of these water molecules nearby the functional groups, we found that on average, each amine group has 2.47 and 3.86 water molecules, and each hydroxyl group has 0.61 and 0.85 water molecules at 4 wt% and 7 wt% water content, respectively. The water diffusion proceeds via the hopping mechanism and is enhanced with increasing water content: 0.1690 ?? 10-6 cm 2/s for 4 wt% water content and 0.2065 ?? 10-6 cm2/s for 7 wt% water content.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:33 ,  Issue: 2 )